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Abstract

Effects of imposed pressure gradients on the solidification characteristics of planar Poiseuille–Couette flows are mathematically inves-
tigated. Under the assumptions of quasi-steady state heat transfer, closed form expressions are obtained for the variations in the dimen-
sionless freeze-front location and the Nusselt number, as a function of the Brinkman number, Biot number and the dimensionless
pressure gradient. It is revealed that an imposed pressure gradient effectively slows down the rate of interfacial growth, irrespective of
whether the pressure gradient is favourable or adverse. Non-trivial influences of the pressure gradient on the instantaneous rate of inter-
facial growth are also noted.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Solidification in presence of Couette flow offers with a
topic of immense interest for the scientists and engineers,
primarily attributable to its relevance in various materials
processing applications of emerging importance. For
instance, one may refer to the semiconductor crystal
growth processes, in which there is an interesting interplay
between the parallel shear flows and directional solidifica-
tion [1]. Despite such practical relevance, however, melt-
ing/solidification phase change processes in presence of
Couette flows have not been extensively studied in the liter-
ature. Huang [2] were the first group of researchers to ana-
lyze the melting of semi-infinite regions in Couette flows.
Analogous studies in the context of solidification heat
transfer have recently been executed by Hall and Mackie
[3], by addressing the problem of quasi-steady state heat
transfer in a solidifying planar Couette flow with significant
viscous dissipation effects. The above authors have essen-
tially derived closed form expressions for the dimensionless
freeze-front location, interface Nusselt number and the
dimensionless shear stress, as functions of the pertinent
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non-dimensional parameters. However, the effects of pres-
sure gradient have not been considered in their study.

Aim of the present work is to investigate the influences of
imposed pressure gradients on solidification heat transfer in
presence of combined pressure- and shear-driven liquid
flows (Poiseuille–Couette flows). This is motivated by the
consideration that in real-life material processing applica-
tions involving solidification heat transfer, a pure shear-
driven flow may not be very common. In fact, in reality,
pressure gradients imposed on the liquid stream, over and
above the shear-driven flow actuation mechanisms, are also
expected to play critical roles in the pertinent transport pro-
cesses. In the present study, the regimes of numerical values
for the pressure gradients and the shear rates are taken to be
competitive in nature, so as to bring out an interesting and
non-trivial interplay between these two mechanisms, with
regard to the progress of the solid front and the overall rate
of heat transfer. In particular, solutions are presented for the
instantaneous locations of the solid–liquid interface and the
Nusselt number, as functions of the Biot number, Brinkman
number and the ratio of pressure to viscous forces.
2. Mathematical modeling

For mathematical modeling, we consider a one-dimen-
sional region of thickness L between two parallel plates,
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as shown in Fig. 1. A constant axial pressure gradient (dp/
dx) acts on the intervening liquid, which is initially kept at
a temperature above its freezing point. The top plate moves
along the horizontal direction with a constant velocity, V,
whereas the bottom plate is kept stationary. The upper
plate is maintained as insulated, while heat is extracted
from the lower plate because of energy exchange with an
ambient (the ambient being at a temperature below the
freezing point of the liquid). For analyzing the problem,
following major assumptions are made:

(i) The liquid is assumed to be single-component and
Newtonian, with temperature-independent thermo-
physical properties.

(ii) The flow is considered to be laminar, fully developed
and incompressible.

(iii) Axial heat conduction is neglected, in comparison to
its transverse counterpart.

(iv) A quasi-steady heat transfer is assumed, as justified
by the considerations of low Stefan number [4].

For mathematical modeling, the following non-dimen-
sional parameters are employed: Y ¼ y

L, D ¼ d
L, U ¼ u

V ,

h ¼ ðT�T1Þ
ðT m�T1Þ, s ¼ ast

L2 , Pr ¼ lcl

kl
, c ¼ kl

ks
, Bi ¼ hL

ks
, Br ¼ lV 2

klðT m�T1Þ,

Ste ¼ csðT m�T1Þ
hsf

, C ¼ ð�dp=dxÞL2

lV , where Y is the dimensionless
transverse coordinate, D is the dimensionless solid-layer
thickness, U is the dimensionless flow velocity, h is the
dimensionless temperature, s is the Fourier number, Pr is
the Prandtl number of the liquid, c is the ratio of the liquid
to solid thermal conductivity, Bi is the Biot number, Br is
the Brinkman number, Ste is the Stefan number and C is
the ratio of pressure and viscous forces.

A quasi-steady state solution of the velocity field, with
the considerations made as above, can be obtained by solv-
ing the Navier Stokes equation with inconsequential tran-
sient and advective terms, as

UðY ; sÞ ¼ Y � DðsÞ
1� DðsÞ

� �
þ C

2
ðY � DÞðY � 1Þ ð1Þ

The above velocity field satisfies the following boundary
conditions: U = 0 at Y = D and U = 1 at Y = 1. With this
velocity variation as an input, the energy equation in the
Fig. 1. A schematic diagram dep
liquid phase can subsequently be solved. A non-dimen-
sional form of this equation and the pertinent boundary
conditions are as follows:

o
2hl

oY 2
þ Br

oU
oY

� �2

¼ 0 ð2Þ

ohl

oY

����
Y¼1

¼ 0 ð3aÞ

hlðY ¼ Dþ; sÞ ¼ 1 ð3bÞ

A solution to Eq. (2) can be obtained in the following form:

hl ¼ 1þ Br

ð1� DÞ2
1

2
ðD2 � Y 2Þ þ ðY � DÞ

� �

þ Br
C2

3
þ C2

4
ðDþ 1Þ2 � C2

2
ðDþ 1Þ � CD

ð1� DÞ

� �
ðY � DÞ

� Br
1

12
C2ðY 4 � D4Þ þ C2

8
ðDþ 1Þ2

�
ðY 2 � D2Þ

� CðDþ 1Þ
2ð1� DÞ ðY

2 � D2Þ � C2ðDþ 1Þ
6

ðY 3 �D3Þ

þ C
3ð1� DÞ ðY

3 � D3Þ
�

ð4Þ

For the heat diffusion in the solid, the governing equation
is as follows:

o
2hs

oY 2
¼ 0 ð5Þ

with the appropriate boundary conditions as

ohs

oY

����
Y¼0

¼ BihsðY ¼ 0; sÞ; s > 0 ð6aÞ

hsðY ¼ D�; sÞ ¼ 1; s > 0 ð6bÞ

A quasi-steady temperature distribution can be obtained
from Eq. (5) in a straight forward manner, as

hsðY ; sÞ ¼
Bi�1 þ Y

Bi�1 þ D
ð7Þ

The temperature distributions in the liquid and the solid
phases, as represented by Eqs. (4) and (7), are coupled by
the Stefan condition, as follows:
icting the physical problem.
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ohs

oY

����
Y¼D�

� c
ohL

oY

����
Y¼Dþ

¼ 1

Ste
dD
ds

ð8Þ

This coupling gives the temporal variation of the solid-
layer thickness in the following integral form:

Ste
Z s

0

ds¼
Z D

0

12ð1�D0ÞðBi�1þD0ÞdD0

12ð1�D0Þ� cBrðBi�1þD0Þð12þC2ð1�D0Þ4Þ
ð9Þ

The integral appearing on the right hand side of Eq. (9)
can be evaluated analytically to yield the following
relationship:

Ste � s¼ c5 �
X5

i¼1

Ri � log xþ c4R4
i þ c3R3

i þ c2R2
i þ c1Riþ c0

� �� �
ð10Þ

where Ri ¼ Root of ða5R5 þ a4R4 þ a3R3 þ a2R2 þ a1Rþ
a0 ¼ 0Þ. In Eq. (10), ci are numerically obtained real coef-
ficients, based on the chosen non-dimensional parameters
(namely, Bi, Br and C). The expressions for evaluation of
ai are as follows:

a0 ¼ 12� cBrC2Bi�1 � 12cBrBi�1

a1 ¼ �12þ 4cBrC2Bi�1 � cBrC2 � 12cBr

a2 ¼ �6cBrC2Bi�1 þ 4cBrC2

a3 ¼ 4cBrC2Bi�1 � 6cBrC2

a4 ¼ �cBrC2Bi�1 þ 4cBrC2

a5 ¼ �cBrC2

ð10aÞ

Finally, by utilizing the concept of the bulk mean tem-
perature of flow, the Nusselt number is evaluated as

Nu ¼ hL
kl

¼ ðhl;avg � 1Þ�1ohl

oY

����
Y¼Dþ

ð11Þ

where

hl;avg ¼
T l;avg � T1
T m � T1

¼ 1

U mð1� DÞ

Z 1

D
Uhl dY ð11aÞ

In Eq. (11a), Um is the non-dimensional average velocity,
given as

U m ¼
1

1� D

Z 1

D
U dY ð11bÞ

which implies

U m¼ ð1�DÞ
2
þ C

6
ð1�D3Þ� C

4
ð1þDÞð1�D2Þþ C

2
Dð1�DÞ

ð11cÞ

ohl

oY

����
Y¼Dþ

¼Br
1

ð1�DÞþC2 ð1�DÞ3

12

 !
ð11dÞ
hl;avg¼
1

ð1�DÞUm

� �
C0ð1�DÞþC1

2
ð1�D2ÞþC2

3
ð1�D3Þ

�

þC3

4
ð1�D4ÞþC4

5
ð1�D5ÞþC5

6
ð1�D6ÞþC6

7
ð1�D7Þ

�
ð11eÞ

Various parameters appearing in the above expression are
given in Appendix A, for the sake of completeness.
3. Results and discussion

For illustrations, the mathematical model described in
Section 2 is simulated by employing different values of
the significant non-dimensional numbers that effectively
dictate the nature of the solidification processes, both qual-
itatively and quantitatively. Fig. 2a depicts the variation of
the solid-layer thickness (normalized with respect to the
steady state value of the same), as a function of the non-
dimensional time, for different values of the parameters C

and Br, with Bi = 20 and c = 0.5. The nature of interfacial
growth, as observed from Fig. 2a, can be explained from
the consideration that as solidification progresses, the tem-
perature gradient in the solid decreases and consequently,
the heat flux in the solid side of the interface also decreases.
On the other hand, a thicker solid-layer implies a thinner
liquid layer through which the fluid flow may occur. In case
the flow is purely shear-driven (i.e., C = 0), it is intuitively
obvious that a thinner liquid layer would result in steeper
velocity gradients in the liquid (the maximum shear veloc-
ity, namely the upper plate velocity, remaining unaltered).
This, however, need not be necessarily true in case a pres-
sure gradient acts on the flow. This is because of the fact
that with a thinner liquid layer, the pressure gradient-
dependent component of the flow velocity also becomes
weaker in strength. The resultant velocity gradient, there-
fore, may increase or decrease, depending on the instanta-
neous thickness of the liquid layer and the pressure
gradient to which the flow is subjected. During the initial
transients, it is revealed that the magnitude of the velocity
gradient (and hence the viscous dissipation rate) decreases
monotonically with the thickening of the solidified layer.
As a result, the liquid-side interfacial heat flux decreases
progressively with the growth of the solid-layer. It is also
observed that the difference between the solid-side and
the liquid-side interfacial heat flux decreases with progress
in solidification, which implies that the rate of interfacial
growth also decreases. However, towards the end of the
solidification process, the liquid layer becomes extremely
thin and hence, the velocity gradient within the same tends
to increase abruptly, leading to higher rates of irreversible
conversion of mechanical energy into an equivalent inter-
molecular form of energy (through viscous dissipation).
This augments the rate of viscous dissipation almost
instantaneously, which tends to arrest the rate of interface
growth considerably, towards the end of the solidification
process, as evident from Fig. 2a. It can also be observed



Fig. 2. Variation in the normalized freezing front location as a function of
the non-dimensional time due to (a) combined variations in Br and C

(b) variations in C only, and (c) variations in Bi and C.
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from Fig. 2a that higher the value of Br, more retarded is
the rate of interfacial growth. This can be attributed to
the fact that a higher value of Br implies a greater rate of
viscous dissipation and hence, a greater value of the
liquid-side interfacial heat flux, thereby retarding the pro-
gress of solidification. The effect of imposed pressure gradi-
ent on the rate of interface growth, for fixed values of Br

and Bi, is depicted in Fig. 2b. In plotting Fig. 2b, the value
of C is only varied and the other parameters are kept unal-
tered (Bi = 5, c = 0.5 and Br = 0.01). In general, it is
apparent from Fig. 2b that the freezing characteristics with
different magnitudes of C are qualitatively similar, with
more retarded interfacial growths for higher magnitudes
of C. However, on a quantitative note, there is a remark-
able dissimilarity between the characteristic curves with
values of C close to a critical magnitude and the values
of C significantly deviated from the same. An important
observation that can be made in this regard is that there
can be a possibility of achieving an exact balance between
the liquid and the solid side heat fluxes, in which case a fur-
ther progress of solidification momentarily ceases to occur.
This limiting condition can be assessed by setting the tran-
sient term in the Stefan condition to be equal to zero, which
leads to the following equation:

1

Bi�1 þ Dss

� cBr
1

ð1� DssÞ
þ C2

12
ð�DssÞ3

� �
¼ 0 ð12Þ

A substitution of Dss = 0 in Eq. (12) provides us with a lim-
iting (critical) magnitude of the parameter C, beyond which
physically consistent situations of interfacial growth can-
not be achieved in practice. In the present situation, this
limiting magnitude of the pressure gradient can be esti-

mated as jCcriticalj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 Bi

cBr � 1

 �r

. As an illustration, for

Br = 0.01, Bi = 5 and c = 0.8, one gets jCcriticalj ¼ 86:53.
Beyond this limiting magnitude of the pressure gradient,
freezing is not expected to initiate at all and the solutions
presented here cease to be valid. It is also interesting to ob-
serve here that for a real value of jCcriticalj, one must have
Bi > cBr. There is a striking resemblance (in fact, an exact
similarity) between this condition and an analogous one
that has been derived in the work of Hall and Mackie [4]
in the absence of any pressure gradients. With values of
C close to the critical limit (such as the case with
C = �80, as depicted in Fig. 2b), the rate of interface
growth slows down considerably during the initial tran-
sients, passes through an inflexion point (with D/Dss � 0.1),
and then starts increasing again. The initial slowing down
of the interfacial growth can be attributed to the progres-
sively decreasing difference between the solid-side and the
liquid-side interfacial heat fluxes at early instants of time.
This difference comes to a minimum, beyond which the dif-
ference between these two heat fluxes starts increasing
again. Moreover, beyond this critical juncture, a quasi-
steady balance between the additional release of latent
energy and an excess heating due to viscous dissipation is
observed to occur, so that the time rate of relative interfa-
cial growth becomes virtually independent of the imposed
pressure gradient. As a result, the interfacial growth char-
acteristics marked with different values of C are found to
be almost parallel to each other, towards the later rapid
transients. Despite this similarity in the interfacial growth
characteristics, the overall freezing time is found to be con-
siderably higher in case the value of C is taken to be close
to the large limiting value, as compared to the other cases
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with lower magnitudes of C, owing to the slow initial tran-
sients associated with the limiting-high pressure gradients.
Fig. 2c depicts the influence of Biot number on the interfa-
cial growth, in presence of the imposed pressure gradients.
For a given value of C, a higher value of Bi tends to com-
plete the solidification process faster, since it tends to aug-
ment the solid-side interfacial heat flux, and accordingly, to
increase the difference between the solid-side and the li-
quid-side interfacial heat fluxes that acts as a driving poten-
tial to sustain the interfacial growth. The fastest rate of
interface growth, in fact, occurs when Bi ?1, i.e., under
isothermal heat extraction limits.

It is extremely important to mention here that the inter-
facial growth depends only on the magnitude of C and not
on its sign, as evident from Eq. (9). In other words, irre-
spective of whether the pressure gradient is favourable or
adverse, the interfacial growth characteristics are expected
to be the same, provided that the magnitude of C is kept
unaltered. This is because of the fact that the viscous dissi-
pation effects depend only on the integrals of the squares of
the velocity gradients, which means that the directionality
effects associated with the respective pressure-driven and
shear-driven components of the velocities are effectively
inconsequential. This aspect can be further elucidated by
referring to the typical velocity profiles corresponding
adverse and favourable pressure gradients, as depicted in
Fig. 3. From Fig. 3 it is evident that the velocity profiles
with positive and negative values of C (with the same mag-
nitude) turn out to be symmetric with respect to the veloc-
ity profile corresponding to C = 0, thereby ensuring that
the viscous heat generations are independent of the sign
associated with the value of C, and only the magnitude
of C is consequential in this regard.

Fig. 4a depicts a representative variation of the Nusselt
number (Nu) as a function of the parameters Br and C,
with Bi = 20 and c = 0.5 kept as unaltered. It can be
observed that higher values of Br imply higher values of
Nu during the initial transients. This is because of the fact
that that higher values of Br are characterized with stron-
Fig. 3. Representative velocity profiles in the liquid region, for different
values of C, at a time instant when the solid-layer thickness, D = 0.3 (non-
dimensional).

Fig. 4. Variation in the normalized Nusselt number as a function of
the non-dimensional time due to (a) combined variations in Br and C

(b) variations in C only, and (c) variations in Bi and C.
ger viscous heating effects, which implies that augmented
rates of heat extraction are necessary from the interfacial
region to sustain the interface growth. This higher value
of the heat flux, in turn, implies a higher value of Nu. This
effect is found to be even more severe with imposed pres-
sure gradients in the flow. For very low values of Br, on
the other hand, the influence of C is rather weak, and a
progressive rate of increase of the instantaneous value of
Nu can be observed, provided that the magnitude of C is
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kept below a threshold limit. However, for higher magni-
tudes of C, the influence of C on Nu is quite significant,
especially at lower values of Ste � s, as evident from
Fig. 4b. As can be seen from Fig. 4b, for the typically
low value of Br (=0.01), higher magnitudes of C are char-
acterized with significantly delayed rates of increase of Nu,
before it attains its steady state value, which is quite unlike
and contrasting to the cases characterized with the values
of Br that are at least one order of magnitude higher than
this one. This is because of the fact that for lower values of
Br, the magnitude of the imposed pressure gradient domi-
nates the overall heat transfer scenario. Further, since
higher magnitudes of C essentially result in delayed interfa-
cial growths, the initial transients associated with the vari-
ations of Nu are the slowest when the strongest pressure
gradient is imposed. Towards the end of the solidification
transients, the Nu increases abruptly and attains its steady
state value. This is because of a sudden increment in the
liquid-side interfacial heat flux towards the later transients,
for reasons mentioned as earlier. Fig. 4c depicts the influ-
ence of Bi on the transients in Nu, for different values of
C. As explained earlier, increases in the value of Bi imply
decrements in the liquid layer thickness, and hence, result
in higher rates of viscous dissipation, for the same charac-
teristic flow velocity. On the other hand, a higher magni-
tude of C can result in stronger viscous heating effects
(for the same liquid layer thickness), which might eventu-
ally slow down the rate of interfacial growth. As a conse-
quence, the instantaneous Nu with a higher magnitude of
C becomes somewhat less in comparison to the case with
lower magnitudes of C, for the same value of Bi.

Appendix A. Details of the parameters C0 to C7
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